Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Dmitry O. Ivashkevich, Alexander S. Lyakhov,* Pavel N. Gaponik, Andrey N. Bogatikov and Alla A. Govorova

Institute of Physico-Chemical Problems, Belarusian State University, Leningradskaya Str., 14, Minsk 220050, Belarus

Correspondence e-mail: lyakhov@fhp.bsu.unibel.by

Key indicators

Single-crystal X-ray study T = 293 KMean $\sigma(C-C) = 0.004 \text{ Å}$ R factor = 0.033 wR factor = 0.097 Data-to-parameter ratio = 16.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. In the title compound, $[CuCl_2(C_3H_5N_7)_2]$, the coordination polyhedron of the Cu atom is an elongated square bipyramid with $\overline{1}$ site symmetry. The equatorial positions are occupied by the two Cl atoms with Cu–Cl distances of 2.288 (1) Å and two azidoethyltetrazole ligands with Cu–N distances of 1.999 (2) Å. Two Cl atoms in axial positions are 2.956 (1) Å distant from the Cu atom. The Cl atoms play the role of nonsymmetrical bridges responsible for formation of layers parallel to the *bc* plane.

tetrazole- N^4]copper(II)]-di- μ -chloro]

Layered structure of catena-poly[[bis[1-(2-azidoethyl)-

Comment

It has been found in the past few years that the complexes of copper(II) chloride with 1-monosubstituted tetrazole of composition $CuCl_2L_2$, where L = 1-ethyl-, 1-hexyl-, 1-vinyland 1-allyltetrazole, undergo magnetic phase transition to a ferromagnetic form at T = 10-12 K (Gaponik, 1998). X-ray investigations of the complexes with L = 1-ethyltetrazole (Virovets *et al.*, 1995) and L = 1-allyltetrazole (Virovets *et al.*, 1996) showed a layered polymeric crystal structure for these compounds. This is known to be a necessary condition for ferromagnetic ordering for transition metal complexes (Ovcharenko & Sagdeev, 1999). In the present work, the crystal structure of a new complex, (I), of composition $CuCl_2L_2$ (L = 1-azidoethyltetrazole), is reported.

In the title compound, the coordination polyhedron of the Cu atom is an elongated square bipyramid with $\overline{1}$ site symmetry. The equatorial positions are occupied by the two Cl atoms with Cu–Cl distances of 2.288 (1) Å and two N4 atoms of azidoethyltetrazole molecules with Cu–N distances of 1.999 (2) Å. Two Cl atoms in axial positions are at a distance of 2.956 (1) Å from the Cu atom.

The tetrazole ring is essentially planar, with a mean deviation of the terazole ring atoms from their least-squares plane of 0.006 (2) Å. The tetrazole plane forms a dihedral angle of 50.9 (1)° with the equatorial plane of the coordination square bipyramid of the Cu atom. In the azide fragment, the N5–N6 Received 8 June 2001 Accepted 15 June 2001 Online 6 July 2001

 \odot 2001 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 1

ORTEP-3 (Farrugia, 1997) drawing of the molecule of (I). Long intermolecular Cu. .. Cl interactions are shown as dashed lines. Displacement ellipsoids are plotted at the 50% probability level.

Figure 2

The packing diagram of (I) viewed along the a axis (H atoms have been omitted for clarity).

distance is 1.204 (4) Å and the N6–N7 distance is 1.123 (4) Å; the N5-N6-N7 and C7-N5-N6 bond angles are 173.1 (4) and 115.7 $(3)^{\circ}$, respectively.

The analysis of the crystal packing of complex (I) reveals a couple of interesting features. The Cl atoms play the role of non-symmetrical bridges which are responsible for formation of layers parallel to the bc plane. They also act as acceptors of non-classic intermolecular hydrogen bonds C5-H5···Cl, with a Cl···C5 distance of 3.529 (3) Å (Steiner, 1996). Thus, the title compound has a layered polymeric crystal structure, and hence may be a candidate for magnetic properties investigations.

Experimental

The synthesis of the title compound was carried out at 425-426 K by reaction of CuCl₂·2H₂O with 1-(2-azidoethyl)tetrazole (molar ratio 1:2) by a method proposed by Degtiarik et al. (1985). Recrystallization of (I) was performed from aqueous solution. 1-(2-Azidoethyl)tetrazole was prepared by heterocyclization of 1-amino-2azidoethane with ethyl orthoformate and sodium azide in acetic acid (Gaponik et al., 1985).

Crystal data

$[CuCl_2(C_3H_5N_7)_2]$	$D_x = 1.818 \text{ Mg m}^{-3}$
$M_r = 412.72$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/c$	Cell parameters from 25
a = 15.616 (2) Å	reflections
b = 6.702 (2) Å	$\theta = 17.2 - 24.2^{\circ}$
c = 7.208 (6) Å	$\mu = 1.83 \text{ mm}^{-1}$
$\beta = 91.87 (3)^{\circ}$	T = 293 (2) K
$V = 754.0(7) \text{ Å}^3$	Plate, blue
Z = 2	$0.80 \times 0.46 \times 0.02 \text{ mm}$

Data collection

Nicolet R3m four-circle diffract-
ometer
$\omega/2\theta$ scans
Absorption correction: ψ scan
(North et al., 1968)
$T_{\min} = 0.323, \ T_{\max} = 0.964$
880 measured reflections
734 independent reflections
529 reflections with $I > 2\sigma(I)$

Refinement

Refinement on F^2 $w = 1/[\sigma^2(F_o^2) + (0.0690P)^2]$ $R[F^2 > 2\sigma(F^2)] = 0.033$ + 0.2230P] $wR(F^2) = 0.097$ where $P = (F_o^2 + 2F_c^2)/3$ S = 1.04 $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\text{max}} = 0.47 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.34 \text{ e } \text{\AA}^{-3}$ 1734 reflections 106 parameters H-atom parameters constrained

Table 1

Selected geometric parameters (Å, °).

Cu1-Cl1	2.288 (1)	N3-N4	1.351 (3)
Cu1-Cl1 ⁱ	2.956 (1)	N4-C5	1.309 (3)
Cu1-N4	1.999 (2)	C6-C7	1.475 (4)
N1-N2	1.342 (3)	C7-N5	1.476 (3)
N1-C5	1.319 (3)	N5-N6	1.204 (4)
N1-C6	1.467 (3)	N6-N7	1.123 (4)
N2-N3	1.288 (3)		
N4-Cu1-Cl1	89.49 (5)	C5-N4-N3	106.8 (2)
N4 ⁱⁱ -Cu1-Cl1 ⁱ	89.18 (6)	C5-N4-Cu1	128.4 (1)
Cl1-Cu1-Cl1 ⁱ	93.35 (5)	N3-N4-Cu1	124.4 (1)
C5-N1-N2	108.5 (2)	N4-C5-N1	108.3 (2)
C5-N1-C6	130.1 (2)	N1-C6-C7	111.4 (2)
N2-N1-C6	121.3 (2)	C6-C7-N5	106.4 (2)
N3-N2-N1	107.0 (2)	N6-N5-C7	115.7 (3)
N2-N3-N4	109.5 (2)	N7-N6-N5	173.1 (4)

 $R_{\rm int} = 0.018$ $\theta_{\rm max} = 27.5^{\circ}$ $h = -20 \rightarrow 20$ $k = -8 \rightarrow 0$ $l = 0 \rightarrow 9$

3 standard reflections

every 100 reflections

intensity decay: none

Symmetry codes: (i) $-x, y - \frac{1}{2}, \frac{1}{2} - z$; (ii) -x, 1 - y, 1 - z.

Table 2 Hydrogen-bonding geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C5-H5\cdots Cl1^i$	0.93	2.75	3.529 (3)	142
Symmetry code: (i) -	-r 2 - v 1 - z			

The H atoms were included in geometrically calculated positions and refined using a riding model with $U_{iso}(H) = 1.2U_{eq}$ of the corresponding carrier atom.

Data collection: R3m Software (Nicolet, 1980); cell refinement: R3m Software; data reduction: R3m Software; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

References

- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
- Degtiarik, M. M., Gaponik, P. N., Lesnikovich, A. I. & Vrublevski, A. I. (1985). Zh. Obshch. Khim. 55, 516-522. (In Russian.)

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

- Gaponik, P. N. (1998). Chemical Problems of Development of New Materials and Technologies, edited by V. V. Sviridov, pp. 185–214. Minsk: BSU Press.
- Gaponik, P. N., Karavai, V. P. & Grigoriev, Y. V. (1985). *Khim. Geterotsikl.* Soedin. 11, 1521–1524. (In Russian.)
- Nicolet (1980). R3m Software. Nicolet XRD Corporation, Cupertino, California, USA.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
- Ovcharenko, V. I. & Sagdeev, R. Z. (1999). Usp. Khim. 68, 381-401. (In Russian.)
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Steiner, Th. (1996). Cryst. Rev. 6, 1–57.
- Virovets, A. V., Baiidina, I. A., Alekseev, V. I., Podberezskaya, N. V. & Lavrenova, L. G. (1996). *Zh. Strukt. Khim.* 37, 330–336. (In Russian.)
- Virovets, A. V., Podberezskaya, N. V. & Lavrenova, L. G. (1995). Acta Cryst. C51, 1084–1087.